Сравнение чисел. Сравнение в математике — как определить, какие из чисел больше или меньше Сравнение чисел больше

Сравнение чисел - одна из самых легких и приятных тем из курса математики. Впрочем, нужно сказать, что она не так уж и проста. Например, мало кто испытывает трудности со сравнением однозначных или двузначных положительных чисел.

Но числа с большим количеством знаков уже вызывают проблемы, часто люди теряются при сравнении отрицательных чисел и не помнят, как сравнить два числа с разными знаками. На все эти вопросы мы и постараемся ответить.

Правила относительно сравнения положительных чисел

Начнем с самого простого - с чисел, перед которыми не стоит никакого знака, то есть с положительных.

  • Прежде всего, стоит запомнить, что все положительные числа по определению больше нуля, даже если речь идет о дробном числе без целого. Например, десятичная дробь 0,2 будет больше, чем нуль, поскольку на координатной прямой соответствующая ей точка все-таки отстоит от нуля на два небольших деления.
  • Если речь идет о сравнении двух положительных чисел с большим количеством знаков, то нужно сравнивать каждый из разрядов. Например - 32 и 33. Разряд десятков у этих чисел одинаков, но число 33 больше, поскольку в разряде единиц «3» больше, чем «2».
  • Как сравнить между собой две десятичные дроби? Здесь нужно смотреть прежде всего на целую часть - например, дробь 3,5 будет меньше, чем 4,6. А если целая часть одинакова, но различаются знаки после запятой? В этом случае действует правило для целых чисел - нужно сравнивать знаки по разрядам до тех пор, пока не обнаружатся большие и меньшие десятые, сотые, тысячные доли. Например - 4,86 больше 4,75, поскольку восемь десятых больше, чем семь.

Сравнение отрицательных чисел

Если у нас в задаче есть некие числа –а и –с, и нам нужно определить, какое из них больше, то применяется универсальное правило. Сначала выписываются модули этих чисел - |a| и |с| - и сравниваются между собой. То число, модуль которого больше, окажется меньшим в сравнении отрицательных чисел, и наоборот - большим числом будет то, модуль которого меньше.

Что делать, если сравнить нужно отрицательное и положительное число?

Здесь работает всего одно правило, и оно элементарно. Положительные числа всегда больше чисел со знаком «минус» - какими бы они ни были. Например, число «1» всегда будет больше числа «-1458» просто потому, что единица стоит справа от нуля на координатной прямой.

Также нужно помнить, что любое отрицательное число всегда меньше нуля.

После того, как получили полное представление о целых числах, можно говорить об их сравнении. Для этого выясняется, какие числа равные и неравные. Разберутся правила, благодаря которым выясняем, какие из двух неравных больше или меньше. Это правило основано на сравнении натуральных чисел. Будет рассмотрено сравнение трех и более целых чисел, нахождение наименьшего и наибольшего целого числа из заданного множества.

Равные и неравные целые числа

Сравнение двух чисел приводит к тому, что они либо равны либо не равны. Рассмотрим определения.

Определение 1

Два целых числа называют равными, когда их запись полностью совпадает. Иначе они считаются неравными .

Отдельное место для обсуждения имеет 0 и - 0 . Противоположное число - 0 и есть 0 , в этом случает эти два числа равнозначны.

Определение поможет сравнить заданные два числа. Возьмем, например, числа - 95 и - 95 . Их запись полностью совпадает, то есть они считаются равными. Если взять числа 45 и - 6897 , то визуально видно, что они отличаются и не считаются равными. Они имеют разные знаки.

Если числа равные, это записывается при помощи знака « = ». Его расположение идет между числами. Если возьмем числа - 45 и - 45 , то они равны. Запись принимает вид - 45 = - 45 . В случае, если числа неравны, тогда применяется знак « ≠ ». Рассмотрим на примере двух чисел: 57 и - 69 . Эти числа целые, но не равные, так как запись отличается друг от друга.

При сравнивании чисел используется правило модуля числа.

Определение 2

Если два числа имеют одинаковые знаки и их модули равны, то эти два числа считаются равными . Иначе их называют не равными .

Рассмотрим на примере данное определение.

Пример 1

Например, даны два числа - 709 и - 712 . Выяснить, равны ли они.

Видно, что числа имеют одинаковый знак, но это не значит, что они равны. Для сравнения используется модуль числа. По модулю первое число оказалось меньше второго. Они не равны ни по модулю, ни без него.

Значит, делаем вывод, что числа не равны.

Рассмотрим еще пример.

Пример 2

Если взяты два числа 11 и 11 . Они оба равные. По модулю также числа одинаковы. Данные натуральные числа можно считать равными, так как их записи совпадают полностью.

Если получаем неравные числа, тогда необходимо уточнение, какое из них меньше и какое больше.

Сравнение произвольных целых чисел с нулем

В предыдущем пункте было отмечено, что ноль равен сам себе даже со знаком минус. В таком случае равенства 0 = 0 и 0 = - 0 равнозначны и справедливы. При сравнении натуральных чисел имеем, что все натуральные числа больше нуля. Все целые положительные числа натуральные, поэтому и больше 0 .

При сравнении отрицательных чисел с нулем другая ситуация. Все числа, которые меньше нуля, считаются отрицательными. Отсюда делаем вывод, что любое отрицательное число меньше нуля, нуль равен нулю, а любое целое положительное больше нуля.Суть правила заключается в том, что нуль больше отрицательных чисел, но меньше всех положительных.

Например, числа 4 , 57666 , 677848 больше, чем 0 , так как являются положительными. Отсюда следует, что нуль меньше указанных чисел, так как они со знаком + .

При сравнении отрицательных чисел дела обстоят иначе. Число - 1 является целым и меньшим, чем 0 , так как имеет знак минус. Значит, - 50 также меньше нуля. Но ноль больше всех чисел со знаком минус.

Принимаются определенные обозначения для записи при помощи знаков меньше или больше, то есть < и > . Такая запись, как - 24 < 0 имеет значение, что - 24 меньше нуля. Если необходимо записать, что одно число больше, чем другое, применяют знак > , например, 45 > 0 .

Сравнение положительных целых чисел

Определение 3

Все целые положительные числа являются натуральными. Значит, равнение положительных чисел аналогично сравнению натуральных.

Пример 3

Если рассмотреть на примере сравнения 34001 и 5999 . Визуально видим, что первое число имеет 5 знаков, а второе 4 . Отсюда следует, что 5 больше 4 , то есть 34001 больше 5999 .

Ответ: 34001 > 5999 .

Рассмотрим еще один пример.

Пример 4

Если имеется положительные числа 357 и 359 , то видно, что они не равны, хотя оба трехзначные. Производится поразрядное сравнение. Сначала сотен, потом десятков, затем единиц.

Получим, что число 357 меньше 359 .

Ответ: 357 < 359 .

Сравнение целых отрицательных и положительных чисел

Определение 4

Любое целое отрицательное число меньше целого положительного и наоборот.

Сравним несколько чисел и рассмотрим на примере.

Сравнить заданные числа - 45 и 23 . Видим, что 23 – положительное число, а 45 – отрицательное. Заметим, что 23 больше - 45

Если сравнивать - 1 и 511 , то визуально понятно, что - 1 меньше, так как имеет знак минус, а 511 имеет знак + .

Сравнение целых отрицательных чисел

Рассмотрим правило сравнения:

Определение 5

Из двух отрицательных чисел меньшим является то, модуль которого больше и наоборот.

Рассмотрим на примере.

Пример 5

Если сравнивать - 34 и - 67 , то следует произвести сравнение их по модулю.

Получаем, что 34 меньше 67 . Тогда модуль - 67 больше модуля - 34 , значит, что число - 34 больше числа - 67 .

Ответ: - 34 > - 67 .

Рассмотрим целые числа, расположенные на координатной прямой.

Из рассмотренных выше правил получим, что на горизонтальной координатной прямой точки, которым соответствуют большие целые числа, то есть лежат правее тех, которым соответствуют меньшие.

Из чисел - 1 и - 6 видно, что - 6 лежит левее, а следовательно является меньше - 1 . Точка 2 расположена правее - 7 , значит она больше.

Начало отсчета – это ноль. Он больше всех отрицательных и меньше всех положительных. Также и с точками, находящимися на координатной прямой.

Наибольшее отрицательное и наименьшее положительное целое число

В предыдущих пунктах подробно было рассмотрено сравнение двух целых чисел. В данном пункте поговорим о сравнении трех и более чисел, рассмотрим ситуации.

При сравнении трех и более чисел для начала составляются всевозможные пары. Например, рассмотрим для чисел 7 , 17 , 0 и − 2 . Необходимо сравнить их попарно, то есть запись примет вид 7 < 17 , 7 > 0 , 7 > − 2 , 17 > 0 , 17 > − 2 и 0 > − 2 . Результаты могут быть объединены в цепочку неравенств. Запись числе производится в порядке возрастания. В данном случае цепочка будет иметь вид − 2 < 0 < 7 < 17 .

Когда производится сравнение нескольких чисел, то появляется определение наибольшего и наименьшего значения числа.

Определение 6

Число заданного множества считается наименьшим , если оно меньше любого другого из заданных чисел множества.

Определение 7

Число заданного множества является наибольшим , если оно больше любого другого из заданных чисел множества.

Если множество состоит из 6 целых чисел, то запишем это так: − 4 , − 81 , − 4 , 17 , 0 и 17 . Отсюда следует, что − 81 < − 4 = − 4 < 0 < 17 = 17 . Видно, что - 81 – наименьшее число из данного множества, а 17 – наибольшее. Это значит, что эти числа наибольшее и наименьшее только в заданном множестве.

Все числа множества необходимо записывать в порядке возрастания. Цепочка может быть бесконечной, как в данном случае: … , − 5 , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , 5 , … . Данный ряд запишется, как … < − 5 < − 4 < − 3 < − 2 < − 1 < 0 < 1 < 2 < 3 < 4 < 5 < … .

Очевидно, что множество целых чисел огромно и бесконечно, поэтому указать наименьшее или наибольшее число невозможно. Это можно сделать только в заданном множестве чисел. Число, расположенное правее на координатной прямой, всегда считается большим, чем то, которое левее.

Множество положительных чисел имеет наименьшее натуральное число, которое равно 1 . Ноль считается наименьшим неотрицательным числом. Все числа, расположенные левее него отрицательные и меньше 0 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

При решении уравнений и неравенств, а также задач с модулями требуется расположить найденные корни на числовой прямой. Как ты знаешь, найденные корни могут быть разными. Они могут быть такими: , а могут быть и вот такими: , .

Соответственно, если числа не рациональные а иррациональные (если забыл что это, ищи в теме ), или представляют собой сложные математические выражения, то расположить их на числовой прямой весьма проблематично. Тем более, что калькуляторами на экзамене пользоваться нельзя, а приближенный подсчет не дает 100% гарантий, что одно число меньше другого (вдруг разница между сравниваемыми числами?).

Конечно, ты знаешь, что положительные цифры всегда больше отрицательных, и что если мы представим числовую ось, то при сравнении, наибольшие числа будут находиться правее, чем наименьшие: ; ; и т.д.

Но всегда ли все так легко? Где на числовой оси мы отметим, .

Как их сравнить, например, с числом? Вот в этом-то и загвоздка …)

Для начала поговорим в общих чертах как и что сравнивать.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Сравнение дробей

Итак, нам необходимо сравнить две дроби: и.

Есть несколько вариантов, как это сделать.

Вариант 1. Привести дроби к общему знаменателю.

Запишем в виде обыкновенной дроби:

- (как ты видишь, я также сократила на числитель и знаменатель).

Теперь нам необходимо сравнить дроби:

Сейчас мы можем продолжить сравнивать также двумя способами. Мы можем:

  1. просто привести все к общему знаменателю, представив обе дроби как неправильные (числитель больше знаменателя):

    Какое число больше? Правильно, то, у которого числитель больше, то есть первое.

  2. «отбросим» (считай, что мы из каждой дроби вычли единицу, и соотношение дробей друг с другом, соответственно, не изменилось) и будем сравнивать дроби:

    Приводим их также к общему знаменателю:

    Мы получили абсолютно точно такой же результат, как и в предыдущем случае - первое число больше, чем второе:

    Проверим также, правомерно ли мы вычли единицу? Посчитаем разницу в числителе при первом расчете и втором:
    1)
    2)

Итак, мы рассмотрели, как сравнивать дроби, приводя их к общему знаменателю. Перейдем к другому методу - сравнение дробей приводя их к общему… числителю.

Вариант 2. Сравнение дробей с помощью приведения к общему числителю.

Да, да. Это не опечатка. В школе редко кому рассказывают этот метод, но очень часто он весьма удобен. Чтобы ты быстро понял его суть, задам тебе только один вопрос - «в каких случаях значение дроби наибольшее?» Конечно, ты скажешь «когда числитель максимально большой, а знаменатель максимально маленький».

Например, ты же точно скажешь, что Верно? А если нам надо сравнить такие дроби: ? Думаю, ты тоже сразу верно поставишь знак, ведь в первом случае делят на частей, а во втором на целых, значит, во втором случае кусочки получаются совсем маленькие, и соответственно: . Как ты видишь, знаменатели здесь разные, а вот числители одинаковы. Однако, для того, чтобы сравнить эти две дроби, тебе не обязательно искать общий знаменатель. Хотя… найди его и посмотри, вдруг знак сравнения все же неправильный?

А знак-то тот же.

Вернемся к нашему изначальному заданию - сравнить и. Будем сравнивать и. Приведем данные дроби не к общему знаменателю, а к общему числителю. Для этого просто числитель и знаменатель первой дроби умножим на. Получим:

и. Какая дробь больше? Правильно, первая.

Вариант 3. Сравнение дробей с помощью вычитания.

Как сравнивать дроби с помощью вычитания? Да очень просто. Мы из одной дроби вычитаем другую. Если результат получается положительным, то первая дробь (уменьшаемое) больше второй (вычитаемое), а если отрицательным, то наоборот.

В нашем случае попробуем из второй вычесть первую дробь: .

Как ты уже понял, мы так же переводим в обыкновенную дробь и получаем тот же результат - . Наше выражение приобретает вид:

Далее нам все равно придется прибегнуть к приведению к общему знаменателю. Вопрос как: первым способом, преобразуя дроби в неправильные, или вторым, как бы «убирая» единицу? Кстати, это действие имеет вполне математическое обоснование. Смотри:

Мне больше нравится второй вариант, так как перемножение в числителе при приведении к общему знаменателю становится в разы проще.

Приводим к общему знаменателю:

Здесь главное не запутаться, какое число и откуда мы отнимали. Внимательно посмотреть ход решения и случайно не перепутать знаки. Мы отнимали от второго числа первое и получили отрицательный ответ, значит?.. Правильно, первое число больше второго.

Разобрался? Попробуй сравнить дроби:

Стоп, стоп. Не спеши приводить к общему знаменателю или вычитать. Посмотри: можно легко перевести в десятичную дробь. Сколько это будет? Правильно. Что в итоге больше?

Это еще один вариант - сравнение дробей путем приведения к десятичной дроби.

Вариант 4. Сравнение дробей с помощью деления.

Да, да. И так тоже можно. Логика проста: когда мы делим большее число на меньшее, в ответе у нас получается число, больше единицы, а если мы делим меньшее число на большее, то ответ приходится на промежуток от до.

Чтобы запомнить это правило, возьми для сравнения любые два простых числа, например, и. Ты же знаешь, что больше? Теперь разделим на. Наш ответ - . Соответственно, теория верна. Если мы разделим на, что мы получим - меньше единицы, что в свою очередь подтверждает, что на самом деле меньше.

Попробуем применить это правило на обыкновенных дробях. Сравним:

Разделим первую дробь на вторую:

Сократим на и на.

Полученный результат меньше, значит делимое меньше делителя, то есть:

Мы разобрали все возможные варианты сравнения дробей. Как ты видишь их 5:

  • приведение к общему знаменателю;
  • приведение к общему числителю;
  • приведение к виду десятичной дроби;
  • вычитание;
  • деление.

Готов тренироваться? Сравни дроби оптимальным способом:

Сравним ответы:

  1. (- перевести в десятичную дробь)
  2. (поделить одну дробь на другую и сократить на числитель и знаменатель)
  3. (выделить целую часть и сравнивать дроби по принципу одинакового числителя)
  4. (поделить одну дробь на другую и сократить на числитель и знаменатель).

2. Сравнение степеней

Теперь представим, что нам необходимо сравнить не просто числа, а выражения, где существует степень ().

Конечно, ты без труда поставишь знак:

Ведь если мы заменим степень умножением, мы получим:

Из этого маленького и примитивного примера вытекает правило:

Попробуй теперь сравнить следующее: . Ты так же без труда поставишь знак:

Потому что, если мы заменим возведение степень на умножение…

В общем, ты все понял, и это совсем несложно.

Сложности возникают только тогда, когда при сравнении у степеней разные и основания, и показатели. В этом случае необходимо попробовать привести к общему основанию. Например:

Разумеется, ты знаешь, что это, соответственно, выражение приобретает вид:

Раскроем скобки и сравним то, что получится:

Несколько особый случай, когда основание степени () меньше единицы.

Если, то из двух степеней и больше та, показатель которой меньше.

Попробуем доказать это правило. Пусть.

Введем некоторое натуральное число, как разницу между и.

Логично, неправда ли?

А теперь еще раз обратим внимание на условие - .

Соответственно: . Следовательно, .

Например:

Как ты понял, мы рассмотрели случай, когда основания степеней равны. Теперь посмотрим, когда основание находится в промежутке от до, но равны показатели степени. Здесь все очень просто.

Запомним, как это сравнивать на примере:

Конечно, ты быстро посчитал:

Поэтому, когда тебе будут попадаться похожие задачи для сравнения, держи в голове какой-нибудь простой аналогичный пример, который ты можешь быстро просчитать, и на основе этого примера проставляй знаки в более сложном.

Выполняя преобразования, помни, что если ты домножаешь, складываешь, вычитаешь или делишь, то все действия необходимо делать и с левой и с правой частью (если ты умножаешь на, то умножать необходимо и то, и другое).

Кроме этого, бывают случаи, когда делать какие-либо манипуляции просто невыгодно. Например, тебе нужно сравнить. В данном случае, не так сложно возвести в степень, и расставить знак исходя из этого:

Давай потренируемся. Сравни степени:

Готов сравнивать ответы? Вот что у меня получилось:

  1. - то же самое, что
  2. - то же самое, что
  3. - то же самое, что
  4. - то же самое, что

3. Сравнение чисел с корнем

Для начала вспомним, что такое корни? Вот эту запись помнишь?

Корнем степени из действительного числа называется такое число, для которого выполняется равенство.

Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных.

Значением корня часто является бесконечная десятичная дробь, что затрудняет его точное вычисление, поэтому важно уметь сравнивать корни.

Если ты подзабыл, что это такое и с чем его едят - . Если все помнишь - давай учиться поэтапно сравнивать корни.

Допустим, нам необходимо сравнить:

Чтобы сравнить эти два корня, не нужно делать никаких вычислений, просто проанализируй само понятие «корень». Понял, о чем я говорю? Да вот об этом: иначе можно записать как третья степень какого-то числа, равна подкоренному выражению.

А что больше? или? Это ты, конечно, сравнишь без всякого труда. Чем большее число мы возводим в степень, тем больше будет значение.

Итак. Выведем правило.

Если показатели степени корней одинаковы (в нашем случае это), то необходимо сравнивать подкоренные выражения (и) - чем больше подкоренное число, тем больше значение корня при равных показателях.

Сложно запомнить? Тогда просто держи в голове пример и. Что больше?

Показатели степени корней одинаковы, так как корень квадратный. Подкоренное выражение одного числа () больше другого (), значит, правило действительно верное.

А что, если подкоренные выражения одинаковые, а вот степени корней разные? Например: .

Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число. Возьмем для примера:

Обозначим значение первого корня как, а второго - как, то:

Ты без труда видишь, что в данных уравнениях должно быть больше, следовательно:

Если подкоренные выражения одинаковы (в нашем случае), а показатели степени корней различны (в нашем случае это и), то необходимо сравнивать показатели степени (и) - чем больше показатель, тем меньше данное выражение .

Попробуй сравнить следующие корни:

Сравним полученные результаты?

С этим благополучно разобрались:). Возникает другой вопрос: а что если у нас все разное? И степень, и подкоренное выражение? Не все так сложно нам нужно всего- навсего… «избавиться» от корня. Да, да. Именно избавиться)

Если у нас различные и степени и подкоренные выражения, необходимо найти наименьшее общее кратное (читай раздел про ) для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.

Что мы все на словах и на словах. Приведем пример:

  1. Смотрим показатели корней - и. Наименьшее общее кратное у них - .
  2. Возведем оба выражения в степень:
  3. Преобразуем выражение и раскроем скобки (подробнее в главе ):
  4. Посчитаем, что у нас получилось, и поставим знак:

4. Сравнение логарифмов

Вот так, медленно, но верно, мы подошли к вопросу как же сравнивать логарифмы. Если ты не помнишь что это за зверь такой, советую для начала прочитать теорию из раздела . Прочитал? Тогда ответь на несколько важных вопросов:

  1. Что называется аргументом логарифма, а что его основанием?
  2. От чего зависит, возрастает ли функция или убывает?

Если все помнишь и отлично усвоил - приступаем!

Для того, чтобы сравнивать логарифмы между собой, необходимо знать всего 3 приема:

  • приведение к одинаковому основанию;
  • приведение к одинаковому аргументу;
  • сравнение с третьим числом.

Изначально, обрати внимание на основание логарифма. Ты помнишь, что если оно меньше, то функция убывает, а если больше, то возрастает. Именно на этом будет основаны наши суждения.

Рассмотрим сравнение логарифмов, которые уже приведены к одинаковому основанию, либо аргументу.

Для начала упростим задачу: пусть в сравниваемых логарифмах равные основания . Тогда:

  1. Функция, при возрастает на промежутке от, значит по определению, то («прямое сравнение»).
  2. Пример: - основания одинаковы,соответственно сравниваем аргументы: , следовательно:
  3. Функция, при, убывает на промежутке от, значит по определению, то («обратное сравнение»). - основания одинаковы, соответственно сравниваем аргументы: , однако, знак у логарифмов будет «обратный», так как функция убывает: .

Теперь рассмотрим случаи, когда основания различны, но одинаковы аргументы.

  1. Основание больше.
    • . В этом случае используем «обратное сравнение». Например: - аргументы одинаковы, и. Сравниваем основания: однако, знак у логарифмов будет «обратный»:
  2. Основание а находится в промежутке.
    • . В этом случае используем «прямое сравнение». Например:
    • . В этом случае используем «обратное сравнение». Например:

Запишем все в общем табличном виде:

, при этом , при этом

Соответственно, как ты уже понял, при сравнении логарифмов нам необходимо привести к одинаковому основанию, либо аргументу, К одинаковому основанию мы приходим, используя формулу перехода от одного основания к другому.

Можно также сравнивать логарифмы с третьим числом и на основании этого делать вывод о том, что меньше, а что больше. Например, подумай, как сравнить вот эти два логарифма?

Небольшая подсказка - для сравнения тебе очень поможет логарифм, аргумент которого будет равен.

Подумал? Давай решать вместе.

Мы легко сравним с тобой эти два логарифма:

Не знаешь как? Смотри выше. Мы только что это разбирали. Какой знак там будет? Правильно:

Согласен?

Сравним между собой:

У тебя должно получиться следующее:

А теперь соедини все наши выводы в один. Получилось?

5. Сравнение тригонометрических выражений.

Что такое синус, косинус, тангенс, котангенс? Для чего нужна единичная окружность и как на ней найти значение тригонометрических функций? Если ты не знаешь ответы на эти вопросы, очень рекомендую тебе прочитать теорию по этой теме. А если знаешь, то сравнить тригонометрические выражения между собой для тебя не составляет труда!

Немного освежим память. Нарисуем единичную тригонометрическую окружность и вписанный в нее треугольник. Справился? Теперь отметь, по какой стороне у нас откладывается косинус, а по какой синус, используя стороны треугольника. (ты, конечно помнишь, что синус, это отношение противолежащей стороны к гипотенузе, а косинус прилежащей?). Нарисовал? Отлично! Последний штрих - проставь, где у нас будет, где и так далее. Проставил? Фух) Сравниваем, что получилось у меня и у тебя.

Фух! А теперь приступаем к сравнению!

Допустим, нам необходимо сравнить и. Нарисуй эти углы, используя подсказки в рамочках (где у нас отмечено, где), откладывая точки на единичной окружности. Справился? Вот что у меня получилось.

Теперь опустим перпендикуляр из точек, отмеченных нами на окружности на ось … Какую? Какая ось у нас показывает значение синусов? Правильно, . Вот что у тебя должно получиться:

Глядя на этот рисунок, что больше: или? Конечно, ведь точка находится выше точки.

Аналогичным образом мы сравниваем значение косинусов. Только перпендикуляр мы опускаем на ось… Верно, . Соответственно, смотрим, какая точка находится правее (ну или выше, как в случае с синусами), то значение и больше.

Наверное, ты уже догадываешься, как сравнивать тангенсы, верно? Все, что нужно, знать что такое тангенс. Так что такое тангенс?) Правильно, отношение синуса к косинусу.

Чтобы сравнить тангенсы мы так же рисуем угол, как и в предыдущем случае. Допустим, нам необходимо сравнить:

Нарисовал? Теперь так же отмечаем значения синуса на координатной оси. Отметил? А теперь укажи значения косинуса на координатной прямой. Получилось? Давай сравним:

А теперь проанализируй написанное. - мы большой отрезок делим на маленький. В ответе будет значение, которое точно больше единицы. Верно?

А при мы маленький делим на большой. В ответе будет число, которое точно меньше единицы.

Так значение какого тригонометрического выражения больше?

Правильно:

Как ты теперь понимаешь, сравнение котангенсов - то же самое, только наоборот: мы смотрим, как относятся друг к другу отрезки, определяющие косинус и синус.

Попробуй самостоятельно сравнить следующие тригонометрические выражения:

Примеры.

Ответы.

СРАВНЕНИЕ ЧИСЕЛ. СРЕДНИЙ УРОВЕНЬ.

Какое из чисел больше: или? Ответ очевиден. А теперь: или? Уже не так очевидно, правда? А так: или?

Часто нужно знать, какое из числовых выражений больше. Например, чтобы при решении неравенства расставить точки на оси в правильном порядке.

Сейчас научу тебя сравнивать такие числа.

Если надо сравнить числа и, между ними ставим знак (происходит от латинского слова Versus или сокращенно vs. - против): . Этот знак заменяет неизвестный нам знак неравенства (). Далее будем выполнять тождественные преобразования до тех пор, пока не станет ясно, какой именно знак нужно поставить между числами.

Суть сравнения чисел состоит в следующем: мы относимся к знаку так, будто это какой-то знак неравенства. И с выражением мы можем делать все то же, что делаем обычно с неравенствами:

  • прибавить любое число к обеим частям (и вычесть, конечно, тоже можем)
  • «перенести все в одну сторону», то есть вычесть из обеих частей одно из сравниваемых выражений. На месте вычитаемого выражения останется: .
  • домножать или делить на одно и то же число. Если это число отрицательное, знак неравенства меняется на противоположный: .
  • возводить обе части в одну и ту же степень. Если эта степень - четная, необходимо убедиться, что обе части имеют одинаковый знак; если обе части положительны, при возведении в степень знак не меняется, а если отрицательны, тогда меняется на противоположный.
  • извлечь корень одинаковой степени из обеих частей. Если извлекаем корень четной степени, необходимо предварительно убедиться, что оба выражения неотрицательны.
  • любые другие равносильные преобразования.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Разберем несколько типичных ситуаций.

1. Возведение в степень.

Пример.

Что больше: или?

Решение.

Поскольку обе части неравенства положительны, можем возвести в квадрат, чтобы избавиться от корня:

Пример.

Что больше: или?

Решение.

Здесь тоже можем возвести в квадрат, но это нам поможет избавиться только от квадратного корня. Здесь надо возводить в такую степень, чтобы оба корня исчезли. Значит, показатель этой степени должен делиться и на (степень первого корня), и на. Таким числом является, значит, возводим в -ю степень:

2. Умножение на сопряженное.

Пример.

Что больше: или?

Решение.

Домножим и разделим каждую разность на сопряженную сумму:

Очевидно, что знаменатель в правой части больше знаменателя в левой. Поэтому правая дробь меньше левой:

3. Вычитание

Вспомним, что.

Пример.

Что больше: или?

Решение.

Конечно, мы могли бы возвести все в квадрат, перегруппировать, и снова возвести в квадрат. Но можно поступить хитрее:

Видно, что в левой части каждое слагаемое меньше каждого слагаемого, находящегося в правой части.

Соответственно, сумма всех слагаемых, находящихся в левой части, меньше суммы всех слагаемых, находящихся в правой части.

Но будь внимателен! У нас спрашивали что больше...

Правая часть больше.

Пример.

Сравните числа и.

Решение.

Вспоминаем формулы тригонометрии:

Проверим, в каких четвертях на тригонометрической окружности лежат точки и.

4. Деление.

Здесь тоже используем простое правило: .

При или, то есть.

При знак меняется: .

Пример.

Выполни сравнение: .

Решение.

5. Сравните числа с третьим числом

Если и, то (закон транзитивности).

Пример.

Сравните.

Решение.

Сравним числа не друг с другом, а с числом.

Очевидно, что.

С другой стороны, .

Пример.

Что больше: или?

Решение.

Оба числа больше, но меньше. Подберем такое число, чтобы оно было больше одного, но меньше другого. Например, . Проверим:

6. Что делать с логарифмами?

Ничего особенного. Как избавляться от логарифмов, подробно описано в теме . Основные правила такие:

\[{\log _a}x \vee b{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee {a^b}\;{\rm{при}}\;a > 1}\\{x \wedge {a^b}\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\] или \[{\log _a}x \vee {\log _a}y{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee y\;{\rm{при}}\;a > 1}\\{x \wedge y\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\]

Также можем добавить правило про логарифмы с разными основаниями и одинаковым аргументом:

Объяснить его можно так: чем больше основание, тем в меньшую степень его придется возвести, чтобы получить один и тот же. Если же основание меньше, то все наоборот, так как соответствующая функция монотонно убывающая.

Пример.

Сравните числа: и.

Решение.

Согласно вышеописанным правилам:

А теперь формула для продвинутых.

Правило сравнения логарифмов можно записать и короче:

Пример.

Что больше: или?

Решение.

Пример.

Сравните, какое из чисел больше: .

Решение.

СРАВНЕНИЕ ЧИСЕЛ. КОРОТКО О ГЛАВНОМ

1. Возведение в степень

Если обе части неравенства положительны, их можно возвести в квадрат, чтобы избавиться от корня

2. Умножение на сопряженное

Сопряженным называется множитель, дополняющий выражение до формулы разности квадратов: - сопряженное для и наоборот, т.к. .

3. Вычитаение

4. Деление

При или то есть

При знак меняется:

5. Сравнение с третьим числом

Если и, то

6. Сравнение логарифмов

Основные правила:

Логарифмы с разными основаниями и одинаковым аргументом.

Тема

Тип урока

  • изучение и первичное усвоение нового материала

Цели урока

План урока

1. Введение.
2. Теоретическая часть
3. Практическая часть.
4. Домашнее задание.
5. Вопросы

Введение

Давайте посмотрим видео , как упорядочить отрицательные числа

А теперь упорядочите отрицательные числа и расшифруйте тему урока:

Ответ: слово “сравнение”.

Теоретическая часть

Сравнение чисел. Правила

При сравнении двух чисел, первое, на что надо обратить внимание, это знаки сравниваемых чисел. Число с минусом (отрицательное) всегда меньше положительного.

Если оба сравниваемых числа со знаками минус (отрицательные), то мы должны сравнить их модули, то есть, сравнить их не учитывая знаки минус. То число, модуль которого окажется больше, на самом деле меньше.

Например -3 и -5. Сравниваемые числа - отрицательные. Значит, сравним их модули 3 и 5. 5 больше чем 3, значит -5 меньше чем -3.

Если одно из сравниваемых чисел нуль, то отрицательное число будет меньше нуля. (-3 < 0) А положительное - больше. (3 > 0)

Сравнить числа можно и с помощью горизонтальной координатной прямой. Число расположенное левее, меньше числа расположенного правее. Также действует обратное правило. Точка с большей координатой, на координатной прямой, находится правее, чем точка с меньшей координатой.

Например, на рисунке Точка E правее точки A и ее координата больше. (5 > 1)


Сравнение целых чисел

Сравнение абсолютных величин (модулей) чисел

Неравенства с модулем

Практическая часть

Сравнение чисел на числовом луче

Задания

1. Объясните почему:
-5 меньше -1,
-2 больше -16,
-25 меньше 3,
0 больше – 9.

2. Сравните:
на координатной прямой изображены числа: 0; а; в; с. Сравните:

1) а > 0; 2) в < 0; 3) 0 > с.
на координатной прямой изображены числа: 0; а; в; с. Сравните их:

1) а > в; 2) с < а; 3) в < с.

3. Какое из неравенств верно?
Числа а и в – отрицательные; | а | > | в |.
а) а > в; б) а < в.

4. Сравните модуль чисел а и в.
Числа а и в – отрицательные; а < в.

5. Какое из неравенств верно?
а – положительное число,
в – отрицательное число.
а) а > в; б) а < в?

6. Сравните:


Домашнее задание

1. Сравните числа

2. Вычислите

3. Расположите числа в порядке возрастания


Вопросы

Что показывает координата точки на прямой?
Что такое модуль числа с геометрической точки зрения?
Чему равен модуль положительного числа?
Чему равен модуль отрицательного числа?
Чему равен модуль нуля?
Может ли модуль какого-нибудь числа быть отрицательным числом?
Назовите число, противоположное числу 5?
Какое число противоположно самому себе?

Вывод

Любое отрицательное число меньше любого положительного числа.

Из двух отрицательных чисел меньше то, модуль которого больше.

Нуль больше любого отрицательного числа, но меньше любого положительного числа.

На горизонтальной координатной прямой точка с большей координатой лежит правее точки с меньшей координатой.

Список использованных источников

1. Математическая энциклопедия (в 5 томах). - М.: Советская Энциклопедия, 2002. - Т. 1.
2. «Новейший справочник школьника» «ДОМ XXI век» 2008 г.
3. Конспект урока на тему "Сравнение чисел" Автор: Петрова В. П., учитель математики (5-9 класс), г. Киев
4. Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Над уроком работали
Паутинка А.В.
Петрова В.П.

Скомпоновано и отредактировано Паутинкой А.В.

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав



Рак